Hazard Definitions

These terms are used to bring attention to presence of hazards of various risk levels or to important information concerning product life.

CAUTION

Indicates presence of hazard(s) that will or can cause minor personal injury or property damage if ignored.

NOTICE

Indicates special instructions on installation, operation or maintenance that are important but not related to personal injury hazards.

Battery Charge Volt and Amp Values

Volt and amp levels fluctuate depending on the battery state of charge. If batteries are in a state of discharge—as after extended cranking time to start the engine—system volts will measure lower than the regulator setpoint after the engine is restarted and system amps will measure higher. This is a normal condition for the charging system; the greater the battery discharge level, the lower the system volts and the higher the system amps. The volt and amp readings will change as batteries recover and become fully charged: system volts will increase to regulator setpoint and system amps will decrease to low level (depending on other loads).

- **Low Amps:** Minimum or lowest charging system amp value required to maintain battery state of charge. Obtained when testing the charging system with a fully charged battery and no other loads applied. This value will vary with battery type.
- **Medium Amps:** System amps value which can cause the battery temperature to rise above adequate charging temperature within 4–8 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.
- **High Amps:** System amps value which can cause the battery temperature to rise above adequate charging temperature within 2–3 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.
- **Battery Voltage:** Steady-state voltage value as measured with battery in open circuit with no battery load. This value relates to battery state of charge.
- **Charge Voltage:** Voltage value obtained when the charging system is operating. This value will be higher than battery voltage and must never exceed the regulator voltage setpoint.
- **B+ Voltage:** Voltage value obtained when measuring voltage at battery positive terminal or alternator B+ terminal.
- **Surface Charge:** Higher than normal battery voltage occurring when the battery is disconnected from battery charger. The surface charge must be removed to determine true battery voltage and state of charge.
- **Significant Magnetism:** Change in strength or intensity of a magnetic field present in alternator rotor shaft when the field coil is energized. The magnetic field strength when the field coil is energized should feel stronger than when the field is not energized.
- **Voltage Drop or Sag:** Normal condition occurring when the load demand on alternator is greater than rated alternator output at given rotor shaft RPM.

Table of Contents

Section A: Wiring Diagram .. 2
Section B: Basic Troubleshooting 3
Section C: Advanced Troubleshooting 4 – 8

Battery Conditions

NOTICE

Until temperatures of electrical system components stabilize, these conditions may be observed during cold-start voltage tests.

- **Maintenance/Low Maintenance Battery**
 - Immediately after engine starts, system volts are lower than regulator setpoint, amps are medium.
 - 3–5 minutes into charge cycle, system volts increase, amps decrease.
 - 5–10 minutes into charge cycle, system volts increase to, or near, regulator setpoint and amps decrease to a minimum.
 - Low maintenance battery has same characteristics with slightly longer recharge times.

- **Maintenance-free Battery**
 - Immediately after engine starts, system volts are lower than regulator setpoint, low charging amps.
 - Once charge cycle begins, low volts and low amps are still present.
 - After alternator energizes, voltage will increase several tenths. Amps will increase gradually, then quickly, to medium to high amps.
 - Finally, volts will increase to setpoint and amps will decrease.
 - The time it takes to reach optimum voltage and amperage will vary with engine speed, load, and ambient temperature.

- **High-cycle Maintenance-free Battery**
 - These batteries respond better than standard maintenance-free. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.

- **AGM (Absorbed Glass Mat) Maintenance-free Battery**
 - These dry-cell batteries respond better than standard maintenance-free. If battery state of charge drops to 75% or less, batteries should be recharged to 95% or higher separately from the engine’s charging system to avoid damaging charging system components and to provide best overall performance. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.
CEN N1313 Dual Voltage Alternator

Description and Operation

N1313 300 A (28/14 V) dual voltage alternator is internally rectified. All windings and current-conducting components are non-moving, so there are no brushes or slip rings to wear out. Energize switch (commonly an oil pressure switch or ignition switch) activates regulator. Field coil is then energized when rotation is detected. Upper voltage (28 V) is rectified with standard diodes. Lower voltage (14 V) circuit output current is controlled by SCRs. Alternator output current is self-limiting and will not exceed rated capacity of alternator.

N3039 and N3222 regulators used with these units also
- are flat temperature compensated. Setpoints are 28.0 ± 0.2 V and 14.0 ± 0.2 V.
- provide overvoltage cutout (OVCO). Regulator will trip above 32 V for 28 V system (16 V for 14 V system) longer than 2 seconds. OVCO feature detects high voltage and reacts by signaling relay in F–alternator circuit to open, turning off alternator. Restarting engine resets OVCO circuit. If vehicle is run in OVCO mode, OVCO will automatically reset when system voltage drops to 22 V. Regulator regains control of alternator below output voltage.
- maintain alternator output voltage at regulated settings as vehicle electrical loads are switched on and off.

![Figure 1 — N1313 Alternator and N3039 or N3222 Regulator Terminals](image1)

![Figure 2 — N1313 Alternator with Regulator](image2)
Section B: Basic Troubleshooting

Tools and Equipment for Job
- Digital Multimeter (DMM)
- Ammeter (digital, inductive)
- Jumper wires

Identification Record
List the following for proper troubleshooting:
- Alternator model number _________________________
- Regulator model number _________________________
- Setpoint listed on regulator _________________________

Preliminary Check-out
Check symptoms in Table 1 and correct if necessary.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Voltage Output</td>
<td>Check: loose drive belt; low battery state of charge.</td>
</tr>
<tr>
<td></td>
<td>Check: current load on system is greater than alternator can produce.</td>
</tr>
<tr>
<td></td>
<td>Check: defective alternator or regulator.</td>
</tr>
<tr>
<td>High Voltage Output</td>
<td>Check: wrong regulator.</td>
</tr>
<tr>
<td></td>
<td>Check: defective regulator.</td>
</tr>
<tr>
<td>No Voltage Output</td>
<td>Check: alternator.</td>
</tr>
<tr>
<td></td>
<td>Check: presence of energize signal.</td>
</tr>
<tr>
<td></td>
<td>Check: battery voltage at alternator output terminal.</td>
</tr>
<tr>
<td></td>
<td>Check: defective alternator or regulator.</td>
</tr>
<tr>
<td>No 14 V Output</td>
<td>Go to Chart 2, page 6.</td>
</tr>
</tbody>
</table>

Basic Troubleshooting
1. **Inspect charging system components**
 Check connections at ground cables, positive cables, and regulator harness. Repair or replace any damaged component before troubleshooting.

2. **Inspect connections of vehicle batteries**
 Connections must be clean and tight.

3. **Determine battery type, voltage and state of charge**
 Batteries must be all the same type for system operation. If batteries are discharged, recharge or replace batteries as necessary. Electrical system cannot be properly tested unless batteries are charged 95% or higher. See page 1 for details. Nominal battery voltage for 28 V systems is 25.2 ±0.2 V; for 14 V systems is 12.6 ±0.2 V. Less than 25 V or 12.4 V indicates no charge condition when engine is running.

4. **Connect meters to alternator**
 Connect red lead of DMM to alternator 28 V B+ terminal and black lead to alternator B– terminal. Clamp inductive ammeter on 28 V B+ cable.

5. **Operate vehicle**
 Observe charge voltage at batteries with engine running (nom. 27-28 V or 13.5-14.0 V).
 - **CAUTION**
 - If charge voltage is above 32 V for 28V system or 16 V for 14 V system, immediately shut down system. Electrical system damage may occur if charging system is allowed to operate at excessive voltage. Go to Table 1 at left.
 - If voltage is at or below regulator setpoint, let charging system operate for several minutes to normalize operating temperature.

6. **Observe charge volts and amps in each circuit**
 Charge voltage should increase and charge amps should decrease. If charge voltage does not increase within ten minutes, continue to next step.

7. **Batteries**
 Batteries are considered fully charged if charge voltage is at regulator setpoint and charge amps remain at lowest value for 10 minutes.

8. **If charging system**
 If charging system is not performing properly, go to Chart 1, page 5.
N3222 Regulator

DESCRIPTION AND OPERATION

N3222 Regulator with OVCO is attached directly to the outside of alternator. Regulator setpoint has flat temperature compensation. Voltage setpoint is 28.0 ±1.0 V and 14.0 ±0.5.

Main diagnostic feature of regulators consists of two tricolored (red, amber, green) LEDs located on the side of the regulator. One LED indicates 28 V system performance, the other LED indicates 14 V system performance. The two LEDs work independently of each other. See Table 2 for diagnostic features and LED explanations.

OVCO (overvoltage cutout) will trip at any of the following conditions:

- 14 V side trips at voltage higher than regulator setpoint that exists longer than 3 seconds of reading voltage above 16 V. OVCO feature detects overvoltage and reacts by disabling the alternator field circuit. This turns off alternator (14 V LED is steady RED light). OVCO circuit will reset by either:
 - Restarting engine (regulator regains control of alternator output voltage) OR
 - System voltage falling below 11 V. OVCO will automatically reset.

- 28 V side trips at voltage higher than regulator setpoint that exists longer than 3 seconds of reading voltage above 32 V. OVCO feature detects overvoltage and reacts by disabling the alternator field circuit. This turns off alternator (28 V LED is steady RED light). OVCO circuit will reset by either:
 - Restarting engine (regulator regains control of alternator output voltage) OR
 - System voltage falling below 22 V.

Troubleshooting

Shut down vehicle and restart engine. If alternator functions normally after restart, a “no output condition” was normal response of voltage regulator to overvoltage condition. Inspect condition of electrical system, including loose battery cables, both positive and negative. Battery disconnects from system, it could cause overvoltage condition in electrical system, causing OVCO circuit to trip.

If you have reset alternator once, and electrical system returns to normal charge voltage condition, there may have been a one time, overvoltage spike that caused OVCO circuit to trip.

N3039 only: If OVCO circuit repeats cutout a second time in short succession and shuts off alternator F– circuit, try third restart. If OVCO circuit repeats cutout, go to Chart 3, page 7.

N3222 only: If OVCO circuit repeats cutout a second time in short succession and shuts off alternator field circuit, try third restart. If OVCO circuit repeats cutout a third time, check color of LED while engine is running and go to Chart 3a or 3b, page 7.

TABLE 2 – N3222 Regulator LED Operation Modes

<table>
<thead>
<tr>
<th>LED COLOR</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Regulator is not energized. Measure E terminal voltage. If voltage above 21 V, regulator is defective.</td>
</tr>
<tr>
<td>FLASHING</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Respective system voltage is at regulated setting and operating under control.</td>
</tr>
<tr>
<td>Amber</td>
<td>Respective system voltage is below regulated setting. Alternator is not producing power or circuit is overloaded. See Chart 1 on page 5 for 28 V systems, Chart 2 on page 6 for 14 V systems.</td>
</tr>
<tr>
<td>Red</td>
<td>Respective system voltage is above regulated setting. This may occur intermittently with voltage transients or with system faults.</td>
</tr>
<tr>
<td>STEADY</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Alternator is shut down and is not producing power for either voltage. 28 V side trips after 3 seconds of reading voltage above 32 V. 14 V side trips after 3 seconds of reading voltage above 16 V. Regulator remains in this mode until reset by restarting engine or if system voltage drops below 22 V or 11 V, respectively. See Chart 3a or 3b on page 7.</td>
</tr>
</tbody>
</table>
Chart 1 – No 28V Alternator Output – Test Charging Circuit

STATIC TEST – KEY ON, ENGINE OFF

<table>
<thead>
<tr>
<th>Shut down vehicle and restart engine. Does alternator function normally after restart?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator responded to overvoltage condition. Go to Chart 3 on page 7 to troubleshoot OVCO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shut off engine. With key on, engine off: Test for battery voltage at alternator 28 V B+ terminal. Does battery voltage exist?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Repair vehicle wiring or recharge/replace batteries as necessary. Continue test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumper 28 V B+ terminal on alternator to E terminal on regulator. Run engine. Wait 10 seconds. Does alternator charge?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No energize signal is present. Repair wiring harness in vehicle energize circuit. Retest alternator.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

When performing the following test, connect jumper wire away from pin A or not at pin A. Spark may erode pin.

Turn off engine, leave key off. Remove alternator-to-regulator 5-pin harness from regulator. Momentarily (1 second) connect jumper wire from pin A in regulator harness plug to B–terminal on alternator. Spark will occur. Touch steel tool to shaft to detect significant magnetism. Is shaft magnetized?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator is defective.</td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

PIN CONNECTIONS

- A: F–
- B: unused
- C: B–
- D: 28 V B+
- E: Phase

Figure 3 – Alternator-to-Regulator 5-Pin Harness Plug
Section C: Advanced Troubleshooting (CONT'D)

Chart 2 – No 14 V Alternator Output – Test Circuit

Before starting test:
1. Remove 14 V B+ cable at alternator. Insulate cable to prevent arcing.
2. Connect test light across 14V B+ terminal on alternator and B–terminal on alternator.

Connect jumper from pin C on alternator-to-regulator 3-socket harness plug to 28 V B+ terminal on alternator. Does test light glow brightly?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternator is defective.

Substitute a known good regulator. Run engine. Is regulator setpoint voltage present?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original regulator was defective.

Alternator is defective.

Figure 4 – Alternator-to-Regulator 3-Socket Harness Plug

SOCKET CONNECTIONS
A 14 V B+
B unused
C 14 V Control
Section C: Advanced Troubleshooting (CONT'D)

Chart 3 – OVC Trip N3039 only – Determine 28 V or 14 V (LEDs on N3222 will determine which output)

With meter red lead on 28 V B+ at battery and black lead on chassis ground, start engine.
Watch meter dial: Does meter read battery charge above 29 V?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Chart 3a – No 14 V Alternator Output – Test OVC Circuit (14 V LED on N3222 steady RED)

Disconnect alternator-to-regulator 3-pin harness from regulator. At receptacle on regulator, connect red lead from DMM to pin C. Connect black lead to B– terminal. Does resistance read OL (out of limits)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternator is defective.</td>
<td>Replace regulator with known good regulator. Run engine. Does OVC trip?</td>
</tr>
</tbody>
</table>

Figure 5 – Alternator-to-Regulator 3-Pin Harness Receptacle

PIN CONNECTIONS
A 14 V B+
B unused
C 14 V Control

Chart 3b – No 28 V Alternator Output – Test OVC Circuit (28 V LED on N3222 steady RED)

Unplug alternator-to-regulator 5-pin harness from regulator. Connect red lead from DMM to pin A in plug. Connect black lead to pin D in plug. Does resistance read 1.0 ± 0.2 ohms?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternator is defective.</td>
<td></td>
</tr>
</tbody>
</table>

Set DMM to Ω auto-ranging scale. Connect red lead from DMM to pin A in plug. Connect black lead to B– terminal. Does resistance read OL (out of limits)? Then connect red lead to pin D and black lead to B– terminal. Does resistance read OL (out of limits)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace existing regulator with known good regulator. Run engine. Does OVC trip?</td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

Figure 6 – Alternator-to-Regulator 5-Pin Harness Plug

PIN CONNECTIONS
A F–
B unused
C B–
D 28 V B+
E Phase
Section C: Advanced Troubleshooting (CONT’D)

I4 V Functions

<table>
<thead>
<tr>
<th>Lead Connections from DMM</th>
<th>Normal Resistance Reading</th>
<th>Component Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>red to pin C in 3-pin receptacle and black to socket C in 5-socket receptacle</td>
<td>OL*</td>
<td>14 V control signal</td>
</tr>
<tr>
<td>red to socket C in 3-socket plug and black to socket A in 3-socket plug</td>
<td>7-13Ω**</td>
<td>SCR gate in anti-drive end housing</td>
</tr>
</tbody>
</table>

28 V Functions

<table>
<thead>
<tr>
<th>Lead Connections from DMM to 5-socket Receptacle</th>
<th>Normal Reading</th>
<th>Component Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>red to socket A and black to socket C</td>
<td>OL* (resistance)</td>
<td>Power transistor</td>
</tr>
<tr>
<td>red to socket A and black to socket D</td>
<td>Short tone on Diode Checker*</td>
<td>Supressor diode</td>
</tr>
</tbody>
</table>

* If readings register other than those shown, regulator is defective.
** If readings register other than those shown, anti-drive end housing is defective.

Figure 7 – Alternator-to-Regulator 5-Pin Harness Plug

Figure 8 – Alternator-to-Regulator 3-Socket Harness Plug

5-PIN CONNECTIONS

A F–
B unused
C B–
D 28 V B+
E Phase

3-SOCKET CONNECTIONS

A 14 V B+
B unused
C 14 V Control

5-SOCKET CONNECTIONS

A F–
B unused
C B–
D 28 V B+
E Phase

3-PIN CONNECTIONS

A 14 V B+
B unused
C 14 V Control

Figure 9 – Alternator-to-Regulator Harness Connections at Regulator – 5-Socket Receptacle and 3-Pin Receptacle

If you have questions about your alternator or any of these test procedures, or if you need to locate a Factory Authorized Service Dealer, please contact us at:

C. E. Niehoff & Co. • 2021 Lee Street • Evanston, IL 60202 USA
TEL: 800.643.4633 USA and Canada • TEL: 847.866.6030 outside USA and Canada • FAX: 847.492.1242
E-mail us at service@ceniehoff.com