Hazard Definitions

These terms are used to bring attention to presence of hazards of various risk levels or to important information concerning product life.

CAUTION
Indicates presence of hazards that will or can cause minor personal injury or property damage.

NOTICE
Indicates special instructions on installation, operation or maintenance that are important but not related to personal injury hazards.

Table of Contents

Section A: Wiring Diagram ... 2
Section B: Basic Troubleshooting 3
Section C: Advanced Troubleshooting4 – 5

Battery Conditions

NOTICE
Until temperatures of electrical system components stabilize, these conditions may be observed during cold-start voltage tests.

• **Maintenance/Low Maintenance Battery**
 — Immediately after engine starts, system volts are lower than regulator setpoint, amps are medium.
 — 3–5 minutes into charge cycle, system volts increase, amps decrease.
 — 5–10 minutes into charge cycle, system volts increase to, or near, regulator setpoint and amps decrease to a minimum.
 — Low maintenance battery has same characteristics with slightly longer recharge times.

• **Maintenance-free Battery**
 — Immediately after engine starts, system volts are lower than regulator setpoint, low charging amps.
 — Once charge cycle begins, low volts and low amps are still present.
 — After alternator energizes, voltage will increase several tenths. Amps will increase gradually, then quickly, to medium to high amps.
 — Finally, volts will increase to setpoint and amps will decrease.

The time it takes to reach optimum voltage and amperage will vary with engine speed, load, and ambient temperature.

• **High-cycle Maintenance-free Battery**
These batteries respond better than standard maintenance-free. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.

• **AGM (Absorbed Glass Mat) Maintenance-free Battery**
These dry-cell batteries respond better than standard maintenance-free. If battery state of charge drops to 75% or less, batteries should be recharged to 95% or higher separately from the engine’s charging system to avoid damaging charging system components and to provide best overall performance. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.

Battery Charge Volt and Amp Values

Volt and amp levels fluctuate depending on the battery state of charge. If batteries are in a state of discharge—as after extended cranking time to start the engine—system volts will measure lower than the regulator setpoint after the engine is restarted and system amps will measure higher. This is a normal condition for the charging system; the greater the battery discharge level, the lower the system volts and the higher the system amps. The volt and amp readings will change as batteries recover and become fully charged: system volts will increase to regulator setpoint and system amps will decrease to low level (depending on other loads).

- **Low Amps**: Minimum or lowest charging system amp value required to maintain battery state of charge, obtained when testing the charging system with a fully charged battery and no other loads applied. This value will vary with battery type.

- **Medium Amps**: System amps value which can cause the battery temperature to rise above adequate charging temperature within 4–8 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.

- **High Amps**: System amps value which can cause the battery temperature to rise above adequate charging temperature within 2–3 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.

- **Battery Voltage**: Steady-state voltage value as measured with battery in open circuit with no battery load. This value relates to battery state of charge.

- **Charge Voltage**: Voltage value obtained when the charging system is operating. This value will be higher than battery voltage and must never exceed the regulator voltage setpoint.

- **B+ Voltage**: Voltage value obtained when measuring voltage at battery positive terminal or alternator B+ terminal.

- **Surface Charge**: Higher than normal battery voltage occurring when the battery is disconnected from battery charger. The surface charge must be removed to determine true battery voltage and state of charge.

- **Significant Magnetism**: Change in strength or intensity of a magnetic field present in alternator rotor shaft when the field coil is energized. The magnetic field strength when the field coil is energized should feel stronger than when the field is not energized.

- **Voltage Droop or Sag**: Normal condition occurring when the load demand on alternator is greater than rated alternator output at given rotor shaft RPM.
CEN C702D Alternator
Description and Operation

C702D 28 V, 350 A alternators are internally rectified. All windings and current-transmitting components are non-moving, so there are no brushes or slip rings to wear out. Energize switch activates regulator. Field coil is then energized. Regulator maintains alternator output voltage at regulated setting as vehicle electrical loads are switched on and off. Alternator output current is self-limiting and will not exceed rated capacity of alternator. A2-332 regulator furnished with most units has D+ terminal that can provide signal to vehicle electrical system, confirming alternator operation. Regulator also has a P terminal that can provide an optional AC voltage tap. Regulator also provides overvoltage cutout (OVCO). Regulator also has a tri-color LED (see page 4).
Basic Troubleshooting

1. **Inspect charging system components for damage**
 Check connections at B– cable, B+ cable, and regulator harness. Check IGN, D+, and P terminal wiring from regulator to vehicle components. Check ignition switch for proper operation. Repair or replace any damaged component before electrical troubleshooting.

2. **Inspect vehicle battery connections**
 Connections must be clean and tight.

3. **Check drive belt**
 Repair or replace as necessary.

4. **Determine battery voltage and state of charge**
 If batteries are discharged, recharge or replace batteries as necessary. Electrical system cannot be properly tested unless batteries are charged 95% or higher.

5. **Connect meters to alternator**
 Connect red lead of DMM to alternator B+ terminal and black lead to alternator B– terminal. Clamp inductive ammeter on B+ cable.

6. **Operate vehicle**
 Observe charge voltage.
 - If charge voltage is above 33 volts, immediately shut down system. Electrical system damage may occur if charging system is allowed to operate at high voltage.
 - Go to Table 1 at left.
 - If voltage is at or below regulator setpoint, let charging system operate for several minutes to normalize operating temperature.

7. **Observe charge volts and amps**
 Charge voltage should increase and charge amps should decrease. If charge voltage does not increase within ten minutes, continue to next step.

8. **Battery**
 If charging system is not performing properly, go to Chart 1, page 5.
A2-332 Regulator
Description and Operation

A2-332 regulator is attached directly to the outside of alternator.

Main diagnostic feature of the regulator is a tricolored LED next to the harness receptacle on regulator. LED works like a voltmeter, measuring charging voltage. See Table 2 for diagnostic features and LED explanations.

This regulator has OVCO (overvoltage cutout) that will trip at vehicle electrical system voltage above 33 volts that exists longer than 3 seconds. OVCO feature detects high voltage and reacts by signaling field circuit to open. This turns off alternator (LED is flashing RED). OVCO circuit is reset when engine is restarted.

<table>
<thead>
<tr>
<th>LED COLOR</th>
<th>STATUS</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Solid</td>
<td>Alternator and regulator operating normally. No action required.</td>
</tr>
<tr>
<td>AMBER</td>
<td>Solid</td>
<td>Low system voltage — Electrical load exceeds alternator rating at present rotor speed. When loads decrease or speed increases, LED should be solid GREEN. If not, check drive belt and charging system connections.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Alternator fault — No output. Replace alternator.</td>
</tr>
<tr>
<td>RED</td>
<td>Solid</td>
<td>High system voltage – May occur during normal load switching. If solid more than 3 seconds, OVCO will trip, disabling charging system. LED will flash RED.</td>
</tr>
</tbody>
</table>

Troubleshooting

Shut down vehicle and restart engine. If alternator functions normally after restart, a “no output condition” was normal response of voltage regulator to “high voltage” condition. Inspect condition of electrical system, including loose battery cables, both positive and negative. If battery disconnects from system, it could cause “high voltage” condition in electrical system, causing OVCO circuit to trip.

If you have reset alternator once, and electrical system returns to normal charge voltage condition, there may have been a one time, high voltage spike, causing OVCO circuit to trip.

If OVCO circuit repeats cutout a second time in short succession and shuts off alternator field circuit, try third restart. If OVCO circuit repeats cutout, go to Chart 1, page 5.

Replace alternator.
Chart 1 - No Alternator Output

<table>
<thead>
<tr>
<th>With engine running, does battery voltage exist at alternator B+ terminal and regulator IGN terminal?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Repair vehicle harness circuit to IGN terminal on regulator or B+ terminal on alternator.</td>
</tr>
</tbody>
</table>

CAUTION
When conducting this step, ensure that the probes do not touch other pins, as an arc may damage the wiring in the harness.

<table>
<thead>
<tr>
<th>With key off, engine off: Unplug alternator-to-regulator harness. Connect DMM on DC volt scale across pins C and D in harness plug. Does battery voltage exist?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With DMM on resistance scale, ensure that the field resistance measured between pins F and C in harness plug is about 1.3 (±0.2) ohms.</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Install a jumper from pin F in harness plug to B+ terminal on alternator. Touch shaft with steel tool to detect significant magnetism. Is shaft magnetized?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set DMM to diode test. Connect black lead of DMM to B+ terminal on alternator. Connect red lead to pin B on harness plug. DMM should read voltage drop. Reverse leads. DMM should read OL.</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alternator is defective.</td>
</tr>
</tbody>
</table>

CONNECTIONS
A → B+ Sense
B → AC IN 2
C → B–
D → B+
E → AC IN 1
F → F+

Figure 3 – Alternator-to-Regulator Harness Plug