Hazard Definitions

These terms are used to bring attention to presence of hazards of various risk levels or to important information concerning product life.

- **CAUTION** Indicates presence of hazards that will or can cause minor personal injury or property damage.
- **NOTICE** Indicates special instructions on installation, operation or maintenance that are important but not related to personal injury hazards.

Table of Contents

Section A: Wiring Diagram2
Section B: Basic Troubleshooting3
Section C: Advanced Troubleshooting 4 – 5

Battery Conditions

- **NOTICE** Until temperatures of electrical system components stabilize, these conditions may be observed during cold-start voltage tests.

 - **Maintenance/Low Maintenance Battery**
 - Immediately after engine starts, system volts are lower than regulator setpoint, amps are medium.
 - 3–5 minutes into charge cycle, system volts increase, amps decrease.
 - 5–10 minutes into charge cycle, system volts increase to, or near, regulator setpoint and amps decrease to a minimum.
 - Low maintenance battery has same characteristics with slightly longer recharge times.

 - **Maintenance-free Battery**
 - Immediately after engine starts, system volts are lower than regulator setpoint, low charging amps.
 - Once charge cycle begins, low volts and low amps are still present.
 - After alternator energizes, voltage will increase several tenths. Amps will increase gradually, then quickly, to medium to high amps.
 - Finally, volts will increase to setpoint and amps will decrease.
 - The time it takes to reach optimum voltage and amperage will vary with engine speed, load, and ambient temperature.

 - **High-cycle Maintenance-free Battery**
 - These batteries respond better than standard maintenance-free. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.

 - **AGM (Absorbed Glass Mat) Maintenance-free Battery**
 - These dry-cell batteries respond better than standard maintenance-free. If battery state of charge drops to 75% or less, batteries should be recharged to 95% or higher separately from the engine’s charging system to avoid damaging charging system components and to provide best overall performance. Charge acceptance of these batteries may display characteristics similar to maintenance batteries.

Battery Charge Volt and Amp Values

Volt and amp levels fluctuate depending on the battery state of charge. If batteries are in a state of discharge—as after extended cranking time to start the engine—system volts will measure lower than the regulator setpoint after the engine is restarted and system amps will measure higher. This is a normal condition for the charging system; the greater the battery discharge level, the lower the system volts and the higher the system amps. The volt and amp readings will change as batteries recover and become fully charged: system volts will increase to regulator setpoint and system amps will decrease to low level (depending on other loads).

- **Low Amps**: Minimum or lowest charging system amp value required to maintain battery state of charge, obtained when testing the charging system with a fully charged battery and no other loads applied. This value will vary with battery type.
- **Medium Amps**: System amps value which can cause the battery temperature to rise above adequate charging temperature within 4–8 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.
- **High Amps**: System amps value which can cause the battery temperature to rise above adequate charging temperature within 2–3 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery manufacturer’s recommendations for proper charge amp rates.
- **Battery Voltage**: Steady-state voltage value as measured with battery in open circuit with no battery load. This value relates to battery state of charge.
- **Charge Voltage**: Voltage value obtained when the charging system is operating. This value will be higher than battery voltage and must never exceed the regulator voltage setpoint.
- **B+ Voltage**: Voltage value obtained when measuring voltage at battery positive terminal or alternator B+ terminal.
- **Surface Charge**: Higher than normal battery voltage occurring when the battery is disconnected from battery charger. The surface charge must be removed to determine true battery voltage and state of charge.
- **Significant Magnetism**: Change in strength or intensity of a magnetic field present in alternator rotor shaft when the field coil is energized. The magnetic field strength when the field coil is energized should feel stronger than when the field is not energized.
- **Voltage Drop or Sag**: Normal condition occurring when the load demand on alternator is greater than rated alternator output at given rotor shaft RPM.
CEN C626 Alternators
Description and Operation

C626 28 V (260 A) alternator is self-rectifying and self-energized. All windings and current-transmitting components are non-moving, so there are no brushes or slip rings to wear out.

When controlled by the A2-337 regulator, the alternator becomes self-energized through sensing of alternator rotation through AC circuit. Residual magnetic field induces small voltage in stator and energizes field coil. Field coil continues receiving incremental voltage until full voltage is achieved. Regulator controls voltage output. See wiring diagram, Figure 2. A2-337 regulator has:

- P terminal that can provide optional AC voltage tap.
- D+ terminal that can provide DC voltage signal to vehicle electrical system, confirming alternator operation.
- Tricolored LED. See page 4.
- T terminal to connect optional A9-4011 temperature sense lead to adjust regulator setpoint to maintain charge voltage (or negative temperature compensation) by sensing ambient temperature within the battery box. If temperature sense lead is not connected, regulator uses setpoint switch on the back of the regulator to keep a constant setpoint (or flat temperature compensation).

When controlled by the A2-141 regulator, this alternator becomes self-energizing through internal diode trios. Residual magnetic field induces small voltage in stator and energizes field coil. Field coil continues receiving incremental voltage until full voltage is achieved. AC is rectified into DC output through diodes. Regulator controls voltage output. Regulator has:

- D+ terminal to provide a signal to vehicle electrical system, confirming alternator operation
- P terminal to provide an optional AC voltage tap.

![Figure 1 — C626 Alternator Terminals](image)

![Figure 2 — C626 Alternator with A2-141 or A2-337 Regulator](image)
Section B: Basic Troubleshooting

Tools and Equipment for Job
• Digital Multimeter (DMM)
• Ammeter (digital, inductive)
• Jumper wires

Identification Record
List the following for proper troubleshooting:
☐ Alternator model number ________________
☐ Regulator model number ________________
☐ Setpoints listed on regulator __________________

Preliminary Check-out
Check symptoms in Table 1 and correct if necessary.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Voltage Output</td>
<td>Check: loose drive belt; low battery state of charge.</td>
</tr>
<tr>
<td></td>
<td>Check: current load on system is greater than alternator can produce.</td>
</tr>
<tr>
<td></td>
<td>Check: defective wiring or poor ground path; low regulator setpoint.</td>
</tr>
<tr>
<td></td>
<td>Check: defective alternator or regulator.</td>
</tr>
<tr>
<td></td>
<td>Check: wrong regulator.</td>
</tr>
<tr>
<td>High Voltage Output</td>
<td>Check: high regulator setpoint.</td>
</tr>
<tr>
<td></td>
<td>Check: defective regulator.</td>
</tr>
<tr>
<td></td>
<td>Check: alternator.</td>
</tr>
<tr>
<td>No Voltage Output</td>
<td>Check: broken drive belt.</td>
</tr>
<tr>
<td></td>
<td>Check: battery voltage at alternator output terminal.</td>
</tr>
<tr>
<td></td>
<td>Check: defective alternator or regulator.</td>
</tr>
<tr>
<td></td>
<td>Check: lost residual magnetism in self-energizing alternator.</td>
</tr>
</tbody>
</table>

TABLE 1 – System Conditions

Basic Troubleshooting
1. Inspect charging system components for damage
 Check connections at B– cable, B+ cable, and regulator harness. Also check connections at regulator terminal wiring from regulator to vehicle components. Repair or replace any damaged component before electrical troubleshooting.

2. Inspect vehicle battery connections
 Connections must be clean and tight.

3. Check drive belt
 Repair or replace as necessary.

4. Determine battery voltage and state of charge
 If batteries are discharged, recharge or replace batteries as necessary. Electrical system cannot be properly tested unless batteries are charged 95% or higher.

5. Connect meters to alternator
 Connect red lead of DMM to alternator B+ terminal and black lead to alternator B– terminal. Clamp inductive ammeter on B+ cable.

6. Operate vehicle
 Observe charge voltage.
 If charge voltage is above 32 volts, immediately shut down system. Electrical system damage may occur if charging system is allowed to operate at high voltage.
 Go to Table 1.

 If voltage is at or below regulator setpoint, let charging system operate for several minutes to normalize operating temperature.

7. Observe charge volts and amps
 Charge voltage should increase and charge amps should decrease. If charge voltage does not increase within ten minutes, continue to next step.

8. Battery
 If considered fully charged if charge voltage is at regulator setpoint and charge amps remain at lowest value for 10 minutes.

9. If charging system is not performing properly, go to Chart 1, page 5.

NOTICE
Failure to check for the following conditions will result in erroneous test results in the troubleshooting charts.

CAUTION
If voltage is at or below regulator setpoint, let charging system operate for several minutes to normalize operating temperature.
A2-337 Regulator

Description and Operation

A2-337 regulator is attached directly to the outside of alternator. A9-4011 temperature sense lead may or may not be used with this regulator. See below.

Main diagnostic feature of the regulator is a tricolored LED next to the harness receptacle on regulator. LED works like a voltmeter, measuring charging voltage. See Table 2 for diagnostic features and LED explanations.

When the A9-4011 temperature sense lead is not in use, the regulator will operate at 27.5 V.

When A9-4011 temperature sense lead is in use, the lead senses the ambient temperature within the battery box and regulator will adjust charge voltage based on battery temperature—the higher the battery temperature, the lower the charge voltage.

TABLE 2 – A2-337 Regulator Diagnostics

<table>
<thead>
<tr>
<th>LED COLOR</th>
<th>STATUS</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Solid</td>
<td>Alternator and regulator operating normally. No action required.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Regulator is in soft start mode. Wait 10 seconds until alternator achieves full rotation.</td>
</tr>
<tr>
<td>AMBER</td>
<td>Solid</td>
<td>Low system voltage — Electrical load exceeds alternator rating at present rotor speed. When loads decrease or speed increases, LED should be solid GREEN. If not, check drive belt and charging system connections.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Alternator fault — No output. Replace alternator.</td>
</tr>
<tr>
<td>RED</td>
<td>Solid</td>
<td>High system voltage. May occur during normal load switching.</td>
</tr>
</tbody>
</table>
Chart 1 – A2-337 & A2-141 No Output

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-energized alternator may have lost magnetism. Touch steel tool to shaft to detect any magnetism. Is shaft magnetized?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Momentarily (1 sec.) jumper D+ terminal on regulator to B+ terminal on alternator. Touch shaft with steel tool to detect significant magnetism. Is shaft magnetized?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Remove jumper from D+ to B+.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unplug alternator-to-regulator harness. Connect DMM across socket A and socket E in harness plug. Does battery voltage exist?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set DMM to diode test. Connect black lead of DMM to socket B in harness plug. Connect red lead to B+ terminal on alternator. DMM should read OL. Reverse leads. DMM should also read OL.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set DMM to Diode Test. Connect DMM red lead to socket D on alternator-to-regulator harness plug. Connect black lead to alternator B+ terminal. Does continuity exist?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator is defective.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOCKET CONNECTIONS

<table>
<thead>
<tr>
<th>A</th>
<th>B–</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Field +</td>
</tr>
<tr>
<td>C</td>
<td>Field –</td>
</tr>
<tr>
<td>D</td>
<td>AC</td>
</tr>
<tr>
<td>E</td>
<td>B+</td>
</tr>
</tbody>
</table>

Figure 4 – Alternator-to-Regulator Harness Plug