Testing Guidelines

Professional service technicians rely on the following guidelines when testing electrical components.

Voltage testing:
- Set meter to proper scale and type (AC or DC).
- Be sure to zero the meter scale or identify the meter burden by touching meter leads together. Meter burden must be subtracted from final reading obtained.
- Be sure the meter leads touch source area only. Prevent short circuit damage to test leads or source by not allowing meter leads to touch other pins or exposed wires in test area.
- Be sure to use CEN tools designed especially for troubleshooting CEN alternators when available. See page 1 for more information.

Resistance (ohm) testing:
- Set meter to proper scale.
- Be sure to zero the meter scale or identify the meter burden by touching meter leads together. Meter burden must be subtracted from final reading obtained.
- Be sure the reading is taken when source is at 70ºF. Readings taken at higher temperatures will increase the reading. Conversely, readings taken at lower temperatures will decrease the reading.
- Be sure reading is taken when source is at 70ºF. Readings taken at higher temperatures will increase the reading. Conversely, readings taken at lower temperatures will decrease the reading.
- Be sure to test directly at the source. Testing through extended harnesses or cable extensions may increase the reading.

Voltage drop testing:
- Measure voltage between B+ on alternator or source and B- (ground) on alternator or source. Record obtained reading. Move to batteries or other source and measure again between B+ and B- terminals on battery or other source. Difference between the two readings represents voltage lost within the circuit due to but not limited to inadequate cable gage or faulty connections.
- Voltage drop measurements must be taken with all electrical loads or source operating.

Dynamic/Live testing:
Definition: Connecting power and ground to a component to test operation/function out of circuit.
1. Be sure to connect jumper leads directly and securely to source contacts of the component being tested.
2. Be sure to make any connection to power and ground at the power supply or battery source terminals. Do not make connection at component source terminals as that may create an arc and damage component source terminals.
CEN C717 Alternator/Regulator Description and Operation

C717 28 V (400 A) alternator is internally rectified. All windings and current-transmitting components are non-moving, so there are no brushes or slip rings to wear out. This alternator has a maximum ambient operating temperature of 65°C/149°F.

This alternator is externally energized when the battery master switch on the vehicle is turned on and provides power to the regulators through the IGN circuit (the A2-351 regulator can also operate without vehicle connection to IGN, and instead provide power by sensing rotation through the regulator’s AC circuit).

Field coil is then energized. AC is rectified into DC output through diodes in drive end rectifier housing and supplied to the battery from the alternator B+ terminal. See schematic diagram on page 3.

Alternator output current is self-limiting and will not exceed rated capacity of alternator. Regulator maintains alternator output voltage at pre-determined regulated setting (see below for setpoints) as vehicle electrical loads are switched on and off.

A2-351 regulator furnished with some units includes:
- External IGN terminal that can provide optional external energize connection. This regulator can function with or without vehicle ignition. When necessary, regulator IGN terminal can be connected to vehicle ignition source to provide battery voltage when engine is running. Circuit should be off (no voltage present) when vehicle ignition is off or engine is not running.
- P terminal that can provide optional AC voltage tap. P terminal signal frequency (Hz) x 10 = alternator shaft rpm.
- D+ terminal that can provide DC voltage signal to vehicle electrical system, confirming alternator operation.
- Tricolored LED. See page 4.
- Battery type selection and battery maintenance/function are the sole responsibilities of the customer.
- Temperature-voltage sense/J1939 harness connector to be used with optional harness.
 - When temperature/voltage sense/J1939 harness is not connected, regulator will operate in fixed voltage setting determined by the select switch position on the bottom of the regulator. See Column 2 in Table 2.
 - When temperature/voltage sense/J1939 harness is connected, regulator will automatically optimize the charge voltage for battery type based on temperature. Also, vehicle manufacturer-requested functions of J1939 interface are available through connector. See Column 3 in Table 2.

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>T-VS/J1939 Harness Not Connected (Voltage Select)</th>
<th>T-VS/J1939 Harness Connected (Battery Select)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1</td>
<td>27.5 V</td>
<td>Maintenance (D Category)</td>
</tr>
<tr>
<td>Position 2</td>
<td>28.0 V</td>
<td>Maintenance-free (Group 31)</td>
</tr>
<tr>
<td>Position 3</td>
<td>28.5 V</td>
<td>AGM</td>
</tr>
<tr>
<td>Position 4</td>
<td>29.0 V</td>
<td>DO NOT USE POSITION # 4</td>
</tr>
</tbody>
</table>
Figure 3 — C717 Alternator Terminals (Regulator Attached to Alternator)

Figure 4 — C717 Schematic Diagram
A2-351 Regulator Troubleshooting

Main diagnostic feature is a tricolor LED located on the front of the regulator. LED works like a voltmeter, measuring charging voltage. See Table 2 for LED diagnostics.

This regulator has OVCO (overvoltage cutout) that will trip at vehicle electrical system voltage above 33 volts that exists longer than 3 seconds. OVCO feature detects high voltage and reacts by signaling relay in alternator field circuit to open. This turns off alternator (LED is flashing RED). OVCO circuit is reset when engine is restarted or can also reset when system voltage normalizes after 2-minute wait.

An additional temperature/voltage sense/J1939 harness may or may not be used with the A2-351 regulator:

- When optional temperature/voltage sense/J1939 harness is not connected, regulator will operate in fixed voltage setting determined by the select switch position on the bottom of the regulator.
- When optional temperature/voltage sense/J1939 harness is connected, regulator will automatically optimize the charge voltage for battery type selected based on temperature. Also, vehicle manufacturer-requested functions of J1939 interface are available through connector.

<table>
<thead>
<tr>
<th>LED COLOR</th>
<th>STATUS</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Solid</td>
<td>Alternator and regulator operating normally.</td>
</tr>
<tr>
<td>AMBER</td>
<td>Solid</td>
<td>Low system voltage — Electrical load exceeds alternator rating at present rotor speed.</td>
</tr>
<tr>
<td></td>
<td>Flashing*</td>
<td>Alternator fault — No output.*</td>
</tr>
<tr>
<td>RED</td>
<td>Solid</td>
<td>High system voltage — May occur during normal load switching.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>OVCO tripped.</td>
</tr>
<tr>
<td>OFF</td>
<td>No power to ignition or regulator is defective.</td>
<td>Go to Chart on page 5.</td>
</tr>
</tbody>
</table>

* LED will flash AMBER for one minute upon start-up/shutdown—if regulator does not sense alternator rotation, regulator will time out.

Temperature-Voltage Sense/J1939 Harness Troubleshooting

To verify temperature sense function on T-VS/J1939 harness: Apply a warm air source (such as a hair dryer, not to heat above 120°F) to battery negative terminal of harness. B+ battery voltage should decrease as temperature increases.

If voltage does not decrease: Check for a resistance reading of 5-15K Ohms across pin H in 10-pin connector on T-VS/J1939 harness and ground with meter in K Ohm scale. Then check for battery voltage across pin J on T-VS/J1939 harness and ground with meter in VDC scale. If both readings pass, go to chart on page 7. If one or both readings fail, verify proper terminal connections on B+ and B− terminal leads from T-VS/J1939 harness. If both terminal connections are good, entire harness is defective and should be replaced.

OVCO Troubleshooting

OVCO condition

Shut down vehicle and restart engine. If alternator functions normally after restart, a “no output condition” was normal response of voltage regulator to “high voltage” condition. Inspect condition of electrical system, including loose battery cables, both positive and negative. If battery disconnects from system, it could cause “high voltage” condition in electrical system, causing OVCO circuit to trip.

If you have reset alternator once, and electrical system returns to normal charge voltage condition, there may have been a one time, high voltage spike, causing OVCO circuit to trip.

If OVCO circuit repeats cutout a second time in short succession and shuts off alternator field circuit, try third restart. If OVCO circuit repeats cutout, check that pin F in alternator-to-regulator harness is not shorted to B+ terminal on alternator and that pin A in alternator-to-regulator harness is not shorted to B−. If it is shorted, alternator is defective. If not, regulator is defective.
No Alternator Output – Test Charging Circuit

• TEST MEASUREMENTS ARE TAKEN ON HARNESS PLUG AT ALTERNATOR. TEST MEASUREMENT AT AN EXTENDED HARNESS PLUG MAY AFFECT RESULTS.
• REMOTE-MOUNTED REGULATORS: CHECK CONDITION OF FUSES IN WIRING HARNESS BEFORE TROUBLESHOOTING.
• BEFORE STARTING DIAGNOSTIC SEQUENCE, VERIFY THE FOLLOWING AND REPAIR/REPLACE IF NOT TO SPEC:
 —BATTERIES FOR STATE-OF-CHARGE (24.5-25.5 V), CONDITION, AND SECURE CONNECTIONS
 —MASTER BATTERY SWITCH FOR FUNCTION

MASTER BATTERY SWITCH ON, KEY ON, ENGINE ON: Test for battery voltage at B+ terminal on alternator to ground, then at IGN terminal on regulator to ground (A2-351 regulator: See page 2 for more information). Does battery voltage exist at both locations?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

ENGINE OFF: Disconnect 6-pin alternator-to-regulator harness plug at regulator and connect CEN A10-114 inline test tool to harness plug end only. Make sure connections are secure.

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
</table>

Repair vehicle wiring as necessary. Run engine and re-test charging circuit. Is charging system performing properly?

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
</table>

System is operative.

MASTER BATTERY SWITCH ON, KEY OFF, ENGINE OFF: Readings of all five tests must pass.

1. Battery voltage test: Connect DMM red lead to socket D in test tool. Connect DMM black lead to socket C in test tool. Battery voltage should exist.
2. Field coil resistance test: Set DMM to ohms test. Field resistance between sockets F and A in test tool should measure nominal 1.0-1.5 ± 0.2 ohms. Field coil is defective if reading is less than 0.5 ohms or greater than 3 ohms.
3. Significant magnetism test:
 a. Securely connect one jumper wire between socket F in test tool and B+ terminal on alternator.
 b. Insert one end of second jumper wire in socket A in test tool. Momentarily (1 sec.) touch other end of second jumper wire to alternator B– terminal. Spark will occur at B– terminal. Touch steel tool to shaft to detect significant magnetism.
 c. Remove both jumper wires.
4. Turn off master battery switch. Disconnect B+ battery cable on alternator. Set DMM to diode test. Connect black lead on DMM to socket E in test tool and red lead to B+ terminal on alternator. DMM should read OL. Reverse leads. DMM should read OL again. Reconnect B+ battery cable to alternator. Turn on master battery switch.
5. Phase supply test: Set DMM to diode test. Connect DMM black lead to socket B in test tool. Connect red lead to alternator B+ terminal. DMM should read blocking in this direction. Then reverse leads. DMM should read flow in this direction. Repeat for socket B and B– terminal. Tests should read flow in one direction and blocking in the other direction.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Regulator is defective.

Alternator is defective.

SOCKET CONNECTIONS

<table>
<thead>
<tr>
<th>Socket</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F–</td>
</tr>
<tr>
<td>B</td>
<td>Phase</td>
</tr>
<tr>
<td>C</td>
<td>B–</td>
</tr>
<tr>
<td>D</td>
<td>B+</td>
</tr>
<tr>
<td>E</td>
<td>D+</td>
</tr>
<tr>
<td>F</td>
<td>F+</td>
</tr>
</tbody>
</table>

Figure 5 – CEN 6-pin A10-114 Inline Harness Tool
Socket Connections